
VARIATIONS ON AUTOMATIC CONTINUITY

ADRIANE KAÏCHOUH

Abstract. If G is a group with the automatic continuity property, when is it the case that the
group GN also has the automatic continuity property?
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We are interested in recovering the topology on a Polish group from its algebraic structure, by
means of the automatic continuity property. A separable topological group G has the automatic
continuity property if every group homomorphism from G to any separable group is continuous.

However strong this may seem, many Polish groups satisfy the automatic continuity property;
we refer the reader to Rosendal’s very good survey [R] for more details. We are interested in
finding more of those, by looking at infinite powers of Polish groups that satisfy the automatic
continuity property. Such powers do not always have the automatic continuity property, even (if
not especially) in the simplest of cases. Yet, they do when the Polish groups in question have
ample generics, a very strong topological property. We prove that they also do with a weaker
requirement: in the very particular framework, introduced by Sabok ([S1]) and Malicki ([M1]),
where automatic continuity of the automorphism group is witnessed by specific combinatorial
properties of the structure.

Moreover, in the course of a discussion on this question with François Le Maître, we discovered
connected Polish groups with ample generics, answering a question of Kechris and Rosendal (see
theorem 48).
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1. Automatic continuity

Definition 1. Let G be a separable topological group. We say that the group G satisfies the
automatic continuity property if every group homomorphism from G to any separable group
is continuous.

Note that the separability assumption on the range group is necessary: without it, we can always
endow the group G with the discrete topology and the identity map of G may fail to be continuous.
Proposition 2. A finite product of groups that all satisfy the automatic continuity property also
satisfies the automatic continuity property.
Proof. Let G1, ..., Gn be topological groups that satisfy the automatic continuity property. Let
H be a separable group and let ϕ : G1 × ... × Gn → H be a group homomorphism. For each i,
consider the group homomorphism ϕi : Gi → H defined by ϕi(gi) = ϕ(1, ..., 1, gi, 1, ..., 1). Since
each Gi satisfies the automatic continuity property, all of the homomorphisms ϕi are continuous.
Since there are finitely many groups in the product, we can write ϕ as g 7→ ϕ1(g)...ϕn(g) so ϕ is
continuous. �

However, the automatic continuity property does not go to infinite products in general. The
following will be our companion (non-)example throughout this note.
Example 3. The group Z/2Z is discrete. Thus, it satisfies the automatic continuity property.
However, the group (Z/2Z)N does not have the automatic continuity property. Indeed, let U be
any non-principal ultrafilter on N. It corresponds to a subgroup HU of (Z/2Z)N of index 2, which
is thus normal, and since U is non-principal, the subgroup HU is not open. But then the group
homomorphism from (Z/2Z)N into Z/2Z of kernel HU cannot be continuous.

The general question we would like to address is the following.
Question 4. If G is a group with the automatic continuity property, when is it the case that the
group GN also has the automatic continuity property?

In this chapter, we only touch upon this question. We answer it for Polish groups, seen as
automorphism groups, in the particular case when automatic continuity results from combinatorial
properties of the structure.

1.1. The Steinhaus property. Rosendal and Solecki introduced in [RS] a very useful (and es-
sentially the only) tool to prove the automatic continuity property.
Definition 5. Let G be a topological group. We say that the group G is Steinhaus if for every
countably syndetic1 subset W of G, there exists an integer k such that W k contains an open
neighborhood of the identity.
Theorem 6. (Rosendal-Solecki, [RS, proposition 2]) Let G be a separable topological group. If G
is Steinhaus, then G satisfies the automatic continuity property.
Example 7. Since the group Z/2Z is discrete, it is Steinhaus. However, the group (Z/2Z)N is not
(otherwise, it would have the automatic continuity property).

It is unclear whether a finite product of Steinhaus groups also is Steinhaus. But since the
Steinhaus property was introduced with the sole aim of proving the automatic continuity property,
it does not matter too much in view of proposition 2.

We would like to argue that the group Z/2Z has the automatic continuity property for the wrong
reason (a trivial reason, discreteness).

1A subset W of G is said to be countably syndetic if there exists a sequence (gn)n∈N of elements of G such
that G =

⋃
n∈N

gnW .
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1.2. Better reasons than discreteness to be Steinhaus: ample generics. Kechris and
Rosendal introduced in [KR] the property of having ample generics for a topological group, and
they proved that if a topological group has ample generics, then it satisfies the automatic continuity
property ([KR, theorem 6.24]).

Definition 8. A subset of a Polish space X is called comeager if it contains a countable inter-
section of dense open subsets of X.

Definition 9. Let G be a topological group. We say that G has ample generics if for every
positive integer n, the diagonal conjugacy action of G on Gn, which is given by

g · (g1, ..., gn) = (g−1g1g, ..., g
−1gng),

admits a comeager orbit.

Many closed subgroups of S∞ have ample generics: the automorphism groups of the random
graph, of the rational Urysohn space, of the infinitely splitting regular rooted tree. More generally,
if a Fraïssé class satisfies two combinatorial properties, namely the extension property and the free
amalgamation property (see sections 3 and 4 for a definition), then the automorphism group of its
Fraïssé limit has ample generics (see [M2, theorem 4.5]).

However, bigger groups often fail to have ample generics. For instance, in the groups Iso(U),
Aut(µ) and U(`2), every conjugacy class is meager. Actually, Kechris and Rosendal asked in [KR,
question 6.13 (1)] whether there exists Polish groups with ample generics that are not subgroups
of S∞. With Le Maître ([KLM]), we exhibited an example of such a group (see theorem 48).

For our purposes, ample generics come out as particularly powerful, for they do carry to infinite
powers.

Proposition 10. Let G be a topological group with ample generics. Then GN also has ample
generics.

Proof. Let n be an integer. We can naturally identify the group (GN)n with (Gn)N. Since G has
ample generics, there exists a tuple ϕ̄ in Gn whose orbit is comeager in Gn. Now consider the
constant sequence f̄ = (ϕ̄)i∈N in (Gn)N. We prove that the orbit of f̄ under the diagonal action of
GN is comeager in (Gn)N.

The orbit of ϕ̄ contains a dense Gδ subset : G · ϕ̄ ⊇
⋂
k∈N

Uk, where each Uk is a dense open subset

of Gn. Then we have

GN · f̄ = {(ḡi)i∈N ∈ (Gn)N : for all i in N, ḡi ∈ G · ϕ̄}

=
⋂
i∈N

{(ḡi)i∈N ∈ (Gn)N : ḡi ∈ G · ϕ̄}

⊇
⋂
i∈N

⋂
k∈N

{(ḡi)i∈Nḡi ∈ Uk}

=
⋂
i∈N

⋂
k∈N

Ai,k.

Since (Gn)N is endowed with the product topology, each of the Ai,k’s is open and dense in (Gn)N,
hence the orbit of f̄ is comeager and GN has ample generics. �

We will see in section 6 a generalization of this theorem to the group of G-valued random
variables.
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1.3. Mimicking ample generics. As mentioned before, ample generics fail for quite a number
of big Polish groups. Yet, it is still possible to circumvent their absence: before they knew that the
group Homeo(2N) had ample generics2, Rosendal and Solecki ([RS, theorem 13]) managed to proved
the automatic continuity property for both Homeo(2N) and Homeo(2N)N. Drawing inspiration from
their arguments, Sabok then introduced in [S1] a set of properties of exactly ultrahomogeneous
metric structures that imply the Steinhaus property for their (big) automorphism groups. These
conditions include the existence property, which is in some way similar to the free amalgamation
property, and the extension property. Later, Malicki proposed in [M1] a slightly different set of
properties, designed to imply not only the automatic continuity property but also several others
consequences of ample generics (see [KR]). In the light of proposition 10, this set of properties that
mimics ample generics is a reasonable condition to consider for our problem.

Their results are the following, with the different properties to be specified and discussed later
on.

Theorem 11. (Sabok, Malicki) LetM be an exactly ultrahomogeneous metric structure. Assume
that M has the extension property, the existence property and an isolation property. Then the
automorphism group of M is Steinhaus and thus satisfies the automatic continuity property.

Remark 12. Again, the question arises of exact ultrahomogeneity and of a possible finitary
characterization for it...

Corollary 13. The following groups have the automatic continuity property.
• Aut(µ) (Ben Yaacov-Berenstein-Melleray, [BBM, theorem 6.2]).
• U(`2) (Tsankov, [T]).
• Iso(U) and Iso(U1) (Sabok, [S1, section 8]).

We would like to investigate these properties and study how they behave with respect to prod-
ucts. In order to do that, given a metric structure and its automorphism group G, we need to
exhibit a structure of which GN is the automorphism group.

2. The juxtaposed structure

Let M be a metric structure of diameter smaller than 1 and let G be its automorphism group.
The juxtaposed structure M∗ of M consists of countably many copies of the structure M that
do not interact with one another, together with a distinguished element ? (that constitutes the
zeroth "copy"). We endow the space ({?} × {0}) ∪ (M × N \ {0}) with

• a unary predicate Cn for each copy M × {n},
• a unary predicate C? for the element (?, 0),
• the metric defined by

d((a, i), (b, j)) =


dM(x, y) if i = j 6= 0

0 if i = j = 0

1 if i 6= j,

• a predicate P ∗ for each predicate P in M , defined by

P ∗((a1, i1), ..., (am, im)) =

{
P (a1, ..., am) if i1 = ... = im 6= 0

1 otherwise.

2This was proved later by Kwiatkowska in [K2].
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• a function F ∗ for each definable function F : Mm →M defined by

F ∗((a1, i1), ..., (am, im)) =

{
(F (a1, ..., am), i1) if i1 = ... = im 6= 0

(?, 0) otherwise.

Remark 14. The additional element ? is designed to define functions. If the structure is relational,
we can just take M∗ to be the product space M × N together with the appropriate predicates.

Since there is a predicate for each copy of M , automorphisms of M∗ preserve copies. Hence,
as expected, the automorphism group of M∗ is isomorphic to GN. The action of GN is defined as
follows: if ϕ = (ϕn)n∈N is an element of GN and (x, i) is in M∗, then

ϕ(a, i) = (ϕi(a), i),

with the convention that for every g ∈ G, g(?) = ?.

Remark 15. It might seem more natural to consider the actual product structure of M , whose
universe is MN, and where predicates and functions work coordinatewise. There is indeed no
problem to define functions here. The automorphism group of the product structure of M is also
the product GN. However, the extension property does not carry to the product structure unless
it is in some sense uniform3. The homogeneity and the existence property do carry, though, and
the proofs are similar to those for the juxtaposed structure.

Proposition 16. Let M be a metric structure of diameter smaller than 1. If the structure M is
exactly ultrahomogeneous, then so is M∗.

Proof. Let f be an isomorphism between two finite substructures of M∗. Since f preserves the
predicates Cn, we can write f as a sequence (fn)n∈N, where fn is an isomorphism between finite
substructures of M . We apply the ultrahomogeneity of M to each fn and extend it to an auto-
morphism ϕn of the whole structure M . Then the sequence (ϕn)n∈N is an automorphism of M∗

which extends f . �

The following proposition gives a description of types in the juxtaposed structure: they are
"products" of types in each copy. To simplify the notation, we only state it for pairs, but it works
exactly the same for bigger tuples.

Proposition 17. Let M be a metric structure of diameter smaller than 1 and let a and b be
elements of M . Let i and j be two distinct indices in N \ {0} and let p be the quantifier-free type
of the tuple ((a, i), (b, j)) in M∗. Let also pa and pb be the quantifier-free types of a and b in M
respectively. Then the set of realizations of p in M∗ is described as follows:

p(M∗) = {((a′, i), (b′, j)) : a′ ∈ pa(M) and b′ ∈ pb(M)}.
Proof. Let c̄ in M∗ have the same quantifier-free type as ((a, i), (b, j)). Since the predicates Ci
and Cj are in the language, we can write c̄ as ((a′, i), (b′, j)), with a′ and b′ in M . Let now θ be a
formula on (M∗)2. If θ depends on its two variables in M∗, then θ(c̄) = 1 = θ((a, i), (b, j)). If not,
say θ is a formula on M × {i}, then it is induced by a formula θM on M (the formula θM is the
projection on M of θ) and we have

θM(a′) = θ(a′, i) = θ(c̄) = θ((a, i), (b, j)) = θ(a, i) = θM(a),

and a′ has the same quantifier-free type as a. Similarly, b′ has the same quantifier-free type as b.
Conversely, any tuple of the form ((a′, i), (b′, j)), where a′ and b′ have the same quantifier-free

type as a and b respectively, has the same quantifier-free type as ((a, i), (b, j)). �

We now go over the assumptions of theorem 11 to see how they carry to the juxtaposed structure.
3The size of the bigger finite set needs to depend only on the size of the smaller one, see definition 18.
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3. The extension property

Definition 18. Let M be a metric structure. We say that M has the extension property
(Sabok and Malicki say thatM has locally finite automorphisms) if for every finitely generated
substructure A ofM and every set P of partial automorphisms of A, there exists a finitely generated
substructure B ofM that contains A such that every partial automorphism in P extends to a global
automorphism of B.
Examples 19. The following structures have the extension property.

• Finite ultrahomogeneous structures.
• The random graph (Hrushovski, [H]).
• The Urysohn space (Solecki, [S2]).
• The measure algebra of the standard probability space (Kechris-Rosendal, [KR, page 32],
see also Sabok, [S1, lemma 9.1]).
• The (unit ball of the) separable Hilbert space (see Sabok, [S1, lemma 10.2]).

Proposition 20. Let M be a metric structure of diameter smaller than 1 which satisfies the
extension property. Then the juxtaposed structure M∗ also satisfies the extension property.
Proof. Let A be a finite substructure ofM∗. Since A is finite, it only intersects finitely many copies
M × {n}. We then apply the extension property in each of those copies and take the union of the
obtained sets (together with the special element (?, 0)). �

4. The existence property

Definition 21. Let M be a metric structures and let A, B and C be finitely generated substruc-
tures of M such that A ⊆ B ∩ C. We say that B and C are independent over A if for all
automorphisms fB : B → B and fC : C → C that stabilize A and coincide on A, the map fB ∪ fC
extends to an automorphism of the substructure generated by B and C.
Definition 22. LetM be a metric structure. We say thatM has the existence property (Sabok
and Malicki say that M has the extension property) if for all finitely generated substructures
A, B and C such that A ⊆ B ∩ C, there exists a finitely generated substructure C ′ of M that is
isomorphic to C such that B and C ′ are independent over A.
Examples 23. Countable structures with the free amalgamation property (see remark ??) have
the existence property. More generally, structures with a stationary independence relation (in the
sense of Tent and Ziegler, [TZ]) have the existence property. In particular, the following structures
do.

• The pure infinite set.
• The random graph.
• The Urysohn space and sphere.

Non-example 24. Finite structures fail to have the existence property. Indeed, the whole struc-
ture is not independent from itself, which is the only substructure isomorphic to it, over the empty
set. There is not enough space in the structure to get independence. In particular, this is the case
of our favorite non-example: the two-element structure.
Proposition 25. Let M be a metric structure of diameter smaller than 1 which satisfies the
existence property. Then the juxtaposed structure M∗ also satisfies the existence property.
Proof. Let A, B and C be finite substructures of M∗ such that A ⊆ B ∩ C. Since B and C
are finite, they only intersects finitely many copies M × {n}. As for the extension property, we
then apply the existence property in each of those copies and take the union of the obtained sets
(together with the special element (?, 0)). �
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5. Isolation

Sabok and Malicki proposed different definitions for the isolation property in theorem 11. How-
ever, it is unclear whether Sabok’s property carries to the juxtaposed structure. Thus, we will only
consider Malicki’s isolation conditions.

5.1. Relevant tuples. Malicki’s theorem only requires isolation for a sufficiently large family of
tuples from the structure. Such families he calls relevant.

Definition 26. A family R of tuples ofM is called relevant if for every tuple a inM , there exists
a tuple b in R such that Gb 6 Ga.

Note that any relevant family of tuples naturally induces a relevant family of tuples of its
juxtaposed structure.

Proposition 27. Let M be a metric structure of diameter smaller than 1 and let R be a relevant
family of tuples of M . Then the family R∗ of all those tuples in M∗ whose projection to the every
copy M × {n} belongs to R is relevant.

Proof. We only prove it for pairs, but the proof works exactly the same for bigger tuples. Let i
and j be two distinct indices in N and let c = ((a, i), (b, j)) be a tuple in M∗. The stabilizer of
this tuple in GN is

(GN)c = {(ϕn) ∈ GN : ϕi ∈ Ga and ϕj ∈ Gb}.
Now, if both i and j are nonzero, let a′ = (a′1, ..., a

′
m) and b

′
= (b′1, ..., b

′
l) be tuples in the

relevant family R such that Ga′ 6 Ga and G
b
′ 6 Gb. Consider the following tuple of R∗:

c′ = ((a′1, i), ..., (a
′
m, i), (b

′
1, j), ..., (b

′
l, j)). Then we have (GN)c′ 6 (GN)c.

If one of the indices is zero, say i = 0, then Ga = G? = G so GN
c = GN

(b,j). So if b′ = (b′1, ..., b
′
l) is

a tuple in the relevant family such that G
b
′ 6 Gb, the tuple ((b′1, j), ..., (b

′
l, j)) of R∗ satisfies that

(GN)
b
′ 6 (GN)b, proving that R∗ is relevant. �

5.2. Direct strong isolation. We first present one of Malicki’s version of the isolation property
needed for theorem 11. In fact, we simplify the condition slightly by mentioning only the local
orbit in the following definition.

Definition 28. Let M be a metric structure and let G be the automorphism group of M . Let a
be a tuple in M and let p be the quantifier-free type of a. Let ε be a positive real. We say that a
is directly ε-strongly isolated if there exist

• a sequence (ak)k∈N of tuples of quantifier-free type p,
• a sequence (Gk)k∈N of subgroups of G, and
• a sequence (δk)k∈N of positive reals

such that
• Gk[ak] ⊆ B(a, ε),
• if a′ is a tuple of quantifier-free type p in the ball B(ak, δk), then the types qftp(a′/a) and

qftp(a′/ak) are realized in Gk[ak], and
• for every sequence (gk)k∈N of automorphisms with gk ∈ Gk for all k, there exists an auto-
morphism g in G such that for all k, we have g � Gk[ak] = gk � Gk[ak].

The last two conditions are conditions of local relative saturation and local relative homogeneity.
DESSIN?

Definition 29. We say that a tuple inM is directly strongly isolated if it is directly ε-strongly
isolated for every positive ε.
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Example 30. (Malicki) In the Urysohn space, every tuple is directly strongly isolated.

Remark 31. If the structure M is discrete, then the condition of being directly strongly isolated
is empty. Indeed, if ā is any tuple in M and ε is any positive real, then ā is directly ε-strongly
isolated by the constant sequences (ā)k∈N and ({idM})k∈N, with any sequence (δk)k∈N of positive
reals. In particular, every tuple in the two-element structure is directly strongly isolated.

We are now ready to state Malicki’s theorem in a precise way.

Theorem 32. (Malicki) Let M be an exactly ultrahomogeneous metric structure. Let R be a
relevant family of tuples of M . Assume that M has the extension property and the existence
property, and that every tuple in R is directly strongly isolated. Then the automorphism group of
M is Steinhaus and thus satisfies the automatic continuity property.

Remark 33. If the structure M is discrete, the theorem more or less restates the result that a
Fraïssé structure with both the extension property and the free amalgamation property has the
automatic continuity property.

We prove that direct strong isolation carries to the juxtaposed structure.

Proposition 34. Let M be a metric structure of diameter smaller than 1. Let ε be a positive
real. Let a and b be two directly ε-strongly isolated elements of M . Let i and j be two distinct
indices in N. Then the tuple c = ((a, i), (b, j)) is also directly ε-strongly isolated in M∗.

Proof. Let (ak), (Gk), (δk) and (bk), (Hk), (εk) witness the direct ε-strong isolation of a and b
respectively. We prove that the tuple c̄ is then directly ε-strongly isolated by the sequences (c̄k),
(Kk) and (ηk), where

• c̄k = ((ak, i), (bk, j)),
• Kk = {(ϕn)n∈N ∈ GN : ϕi ∈ Gk and ϕj ∈ Hk} and
• ηk = min(δk, εk).

First note that Kk is indeed a subgroup of GN. Besides, any element of Kk[c̄k] is of the form
((gk(ak), i), (hk(bk), j)), with gk ∈ Gk and hk ∈ Hk. The isolation of a and b gives that gk(ak) ∈
B(a, ε) and hk(bk) ∈ B(b, ε), and since we take the supremum distance on tuples, we have that
Kk[ck] is contained in the ball B(c̄, ε).

By proposition 17, all the tuples c̄k have the same quantifier-free type as c̄. Let now c̄′ be a tuple
in the ball B(c̄k, ηk) that has the same quantifier-free type as c̄. We can write it c̄′ = ((a′, i), (b′, i))
and, by proposition 17 again, the elements a′ and b′ have the same quantifier-free type as a and
b respectively. We can thus find realizations a1, a2 in Gk[ak] and b1, b2 in Hk[bk] of qftp(a′/a),
qftp(a′/ak) and qftp(b′/a), qftp(b′/bk). Now the tuples c̄1 = ((a1, i), (b1, j)) and c̄2 = ((a2, i), (b2, j))
are realizations of qftp(c̄′/c̄) and qftp(c̄′/c̄k) in Kk[c̄k] (we use proposition 17 once again).

Finally, let (ϕk)k∈N be a sequence of automorphisms of M∗, with ϕk ∈ Kk for all k. We can
write each ϕk as a sequence (ϕkn)n∈N, with ϕki ∈ Gk and ϕkj ∈ Hk. We apply the local relative
homogeneity conditions to the sequences (ϕki )k∈N and (ϕkj )k∈N to get automorphisms ϕi and ϕj of
M such that for all k, we have ϕi � Gk[ak] = ϕki � Gk[ak] and ϕj � Hk[bk] = ϕkj � Hk[ak]. Then the
automorphism ϕ = (ϕn)n∈N of M∗ defined by ϕn = ϕi

ϕn =


ϕi if n = i

ϕj if n = j

idM otherwise

satisfies that ϕ � Kk[c̄k] = ϕk � Kk[c̄k], which completes the proof. �

The proof readily adapts to bigger tuples. As a consequence, we obtain that the isolation
condition in theorem 32 carries to the product.
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Corollary 35. LetM be a metric structure of diameter smaller than 1. Let R be a relevant family
of tuples of M and let R∗ be the relevant family of tuples of M∗ in proposition 27. If every tuple
in R is directly strongly isolated, then so is every tuple in R∗.

This finally yields that this better set of reasons to have a Steinhaus automorphism group carries
to the juxtaposed structure.

Theorem 36. Let M be an exactly ultrahomogeneous metric structure of diameter smaller than
1 and let G be its automorphism group. Let R be a relevant family of tuples of M . Assume that
M has the extension property and the existence property, and that every tuple in R is directly
strongly isolated. Then the group GN is Steinhaus and thus satisfies the automatic continuity
property.

Corollary 37. The group Iso(U1)
N satisfies the automatic continuity property.

Remark 38. The metric on the Urysohn space is not bounded. However, it is equivalent to the
following metric

d′(x, y) =
d(x, y)

1 + d(x, y)
,

which is bounded by 1. Moreover, the isometry groups of (U, d) and (U, d′) are the same. Thus,
we can apply the previous results to the Urysohn space too: we also get the automatic continuity
property for Iso(U)N.

5.3. Indirect strong isolation.

Definition 39. Let M be a metric structure and let G be the automorphism group of M . Let ā
be a tuple in M and let p be the quantifier-free type of ā. Let ε be a positive real. We say that ā
is indirectly ε-strongly isolated if there exist

• a sequence (āk)k∈N of tuples of quantifier-free type p,
• a sequence (Gk)k∈N of subgroups of G,
• a sequence (δk)k∈N of positive reals, and
• a sequence (Xk)k∈N of metric substructures of M

such that
• Xk is exactly homogeneous and satisfies the extension property and the existence property,
• Xk is invariant under the action of Gl, for all l in N,
• Gk � Xk = Aut(Xk) and every element of Aut(Xk) extends uniquely to an element of Gk,
• Gk[āk] ⊆ B(ā, ε),
• if a′ is a tuple of quantifier-free type p in the ball B(ak, δk), then the types qftp(a′/a) and

qftp(a′/ak) are realized in Gk[ak], and
• for every sequence (gk)k∈N of automorphisms with gk ∈ Gk for all k, there exists an auto-
morphism g in G such that for all k, we have g � Xk = gk � Xk.

Remark 40. In the definition of direct isolation, the role of Xk in the local relative homogeneity
condition is played by the local orbit Gk[āk], although the local orbit is not necessarily a sub-
structure of M (let alone an ultrahomogeneous substructure with the extension property and the
existence property).

Definition 41. We say that a tuple in M is indirectly strongly isolated if it is indirectly
ε-strongly isolated for every positive ε.

Examples 42. (Malicki)
• In the measure algebra of a standard probability space X, every partition of X into positive
measure sets is indirectly strongly isolated.
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• In the Hilbert space, every orthonormal tuple is indirectly strongly isolated.

Here is the indirect version of Malicki’s result.

Theorem 43. (Malicki) Let M be an exactly ultrahomogeneous metric structure. Let R be a
relevant family of tuples of M . Assume that M has the extension property and the existence
property, and that every tuple in R is indirectly strongly isolated. Then the automorphism group
of M is Steinhaus and thus satisfies the automatic continuity property.

We now prove that indirect strong isolation carries to the juxtaposed structure.

Proposition 44. Let M be a metric structure of diameter smaller than 1. Let ε be a positive
real. Let a and b be two indirectly ε-strongly isolated elements of M . Let i and j be two distinct
indices in N. Then the tuple c̄ = ((a, i), (b, j)) is also indirectly ε-strongly isolated in M∗.

Proof. Let (ak), (Gk), (δk), (Xk) and (bk), (Hk), (εk), (Yk) witness the indirect ε-strong isolation
of a and b respectively. We prove that the tuple c̄ is then indirectly ε-strongly isolated by the
sequences (c̄k), (Kk), (ηk) and (Zk), where

• c̄k = ((ak, i), (bk, j)),
• Kk = {(ϕn)n∈N ∈ GN : ϕi ∈ Gk and ϕj ∈ Hk},
• ηk = min(δk, εk), and
• Zk = (Xk × {i}) ∪ (Yk × {j}).

As in proposition 34, we have that Kk is a subgroup of GN, that Kk[c̄k] is contained in B(c̄, ε),
that the tuples c̄k have the same quantifier-free type as c̄ and the local relative saturation property.

Note that Zk is indeed a substructure of M∗, whose automorphism group is Aut(Xk)×Aut(Yk).
The proofs of propositions 16, 20 and 25 show that the structure Zk is exactly ultrahomogeneous

and satisfies the extension property and the existence property.
Besides, the restriction of Kk to Zk is (Gk � Xk) × (Hk � Yk), which coincides with Aut(Xk) ×

Aut(Yk) = Aut(Zk).
Moreover, Kl(Zk) = (Gl[Xk]× {i})∪ (Hl[Yk]× {j}). Thus, since Xk and Yk are invariant under

the actions of Gl and Hl respectively, the structure Zk is invariant under the action of Kl.
Finally, let (ϕk)k∈N be a sequence of automorphisms of M∗, with ϕk ∈ Kk for all k. We can

write each ϕk as a sequence (ϕkn)n∈N, with ϕki ∈ Gk and ϕkj ∈ Hk. We apply the local relative
homogeneity conditions to the sequences (ϕki )k∈N and (ϕkj )k∈N to get automorphisms ϕi and ϕj of
M such that for all k, we have ϕi � Xk = ϕki � Xk and ϕj � Yk = ϕkj � Yk. Then the automorphism
ϕ = (ϕn)n∈N of M∗ defined by ϕn = ϕi

ϕn =


ϕi if n = i

ϕj if n = j

idM otherwise

satisfies that ϕ � Zk = ϕk � Zk, which completes the proof. �

The proof readily adapts to bigger tuples. As a consequence, we obtain that the isolation
condition in theorem 43 carries to the product.

Corollary 45. LetM be a metric structure of diameter smaller than 1. Let R be a relevant family
of tuples of M and let R∗ be the relevant family of tuples of M∗ in proposition 27. If every tuple
in R is indirectly strongly isolated, then so is every tuple in R∗.

This finally yields that this indirect better set of reasons to have a Steinhaus automorphism
group also carries to the juxtaposed structure.
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Theorem 46. Let M be an exactly ultrahomogeneous metric structure of diameter smaller than
1 and let G be its automorphism group. Let R be a relevant family of tuples of M . Assume that
M has the extension property and the existence property, and that every tuple in R is indirectly
strongly isolated. Then the group GN is Steinhaus and thus satisfies the automatic continuity
property.

Corollary 47. The groups Aut(µ)N and U(`2)N satisfy the automatic continuity property.

6. Connected groups with ample generics

Recall that when G is a Polish group that has ample generics, then GN also has ample gener-
ics (proposition 10). With Le Maître, we noticed that this could be generalized to the group
L0(X,µ;G) of G-valued random variables on a standard probability space4 (X,µ). Indeed, the
group GN can be viewed as that of G-valued random variables on N. That is what lead us to an
answer to Kechris and Rosendal’s question.

Equip the group L0(X,µ;G) with the topology of convergence in measure. More concretely, if
d is a compatible metric on G, then the topology on L0(X,µ;G) is induced by the metric

dR(g, h) =

∫
X

d(g(x), h(x))dµ(x).

Moreover, whenever G is a Polish group, L0(X,µ;G) is connected (it is even contractible, see
[K1, proposition 19.7]), hence cannot be a topological subgroup of the totally disconnected group
S∞. Together with the following theorem, this yields a family of examples of connected Polish
groups with ample generics, answering Kechris and Rosendal’s question.

Theorem 48. (with Le Maître) Let G be a Polish group with ample generics. Then the group
L0(X,µ;G) also ample generics.

Proof. We wish to prove that for every n in N, the diagonal action of L0(X,µ;G) on L0(X,µ;G)n

admits a comeager orbit. Here too, there is a natural identification of L0(X,µ;G)n with L0(X,µ;Gn).
Let ϕ̄ be an element of Gn whose orbit is comeager and consider the constant function f̄ : x 7→ ϕ̄

in L0(X,µ;Gn). We show that the orbit of f̄ in L0(X,µ;Gn) is comeager.
First, let us remark that the orbit of f̄ is thus described:

L0(X,µ;G) · f̄ = {ḡ ∈ L0(X,µ;Gn) : ḡ(x) ∈ G · ϕ̄ for µ-almost every x}.
Indeed, if ḡ is in the orbit of f̄ , then ḡ is clearly in the set above. Conversely, assume that ḡ(x) is
in G · ϕ̄ almost everywhere. There is a Borel subset B of X with measure 1 such that for every
x in B, there exists an element hx in G such that ḡ(x) = hx · ϕ̄. We would like to find those hx
in a measurable way. For this, we apply the Jankov-von Neumann uniformization theorem to the
following Borel set

S = {(x, hx) ∈ X ×G : [x ∈ B and ḡ(x) = hx · ϕ̄] or x 6∈ B},
which projects to the whole space X. We thus obtain a map h in L0(X,µ;G) whose graph is
contained in S, that is, ḡ = h · f̄ , hence ḡ belongs to orbit of f̄ .

Now the orbit of ϕ̄ is comeager in Gn so it contains a countable intersection
⋂
k∈N

Uk of dense open

subsets of Gn. For every k in N, consider the set

Vk = {ḡ ∈ L0(X,µ;Gn) : ḡ(x) ∈ Uk for µ-almost every x}.
The intersection of all Vk’s is contained in the orbit of f̄ . Therefore, it remains to prove that the
Vk’s are dense and Gδ.

4Say, the unit interval together with its Lebesgue measure.
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To see that Vk is dense, let h̄ be any measurable map from X to Gn and let ε be a positive real.
We apply the Jankov-von Neumann theorem to the Borel set

{(x, ḡx) ∈ X ×Gn : dL(ḡx, h̄(x)) < ε and ḡx ∈ Uk},
which projects to the whole space X. Thereby, we obtain an element ḡ of Vk such that dR(ḡ, h̄) < ε.

Finally, Vk can be written as the intersection
⋂
m∈N

Vk,m, where

Vk,m =
{
ḡ ∈ L0(X,µ;Gn) : µ ({x ∈ X : ḡ(x) ∈ Uk}) > 1− 2−m

}
.

Since the topology on L0(X;µ;Gn) is given by convergence in measure, each of the sets Vk,m is
open in L0(X,µ;Gn), proving that Vk is Gδ, which completes the proof. �

As a consequence, we notably obtain that every Polish group with ample generics embeds in a
connected (even contractible) one with ample generics.

Remark 49. We have another example of a connected Polish group with ample generics: the full
group of a quasi-measure-preserving hyperfinite equivalence relation (see [KLM]). It is interesting
to note that it is also a subgroup of L0(X,µ;S∞).

Thus, the question remains open of whether Polish groups with ample generics exist that are
not subgroups of L0(X,µ;S∞).

7. Concluding remarks

With theorem 48 at hand, it is natural to ask the same question of the group L0(X,µ;G).
However, in this case, the construction of the juxtaposed structure would not make much sense.
Rather, the group L0([0, 1], G) is the automorphism group of a randomization5 of the structure
M, which is the counterpart of the product structure of M. This randomization remains exactly
ultrahomogeneous if the original is. As in the proof of theorem 48, in order to carry properties
from the structure to its randomization, our main tool is the Jankov-van Neumann theorem. But
again, we need some amount of uniformity to apply it.

Answering this question of Kechris and Rosendal came as a very pleasant surprise. Apart from
that, though, the interest of our results lies essentially in that we uncover the automatic continuity
property for new groups. However, this does not shed any new light on Sabok’s and Malicki’s
conditions. It would be nice to know if and how the isolation properties can be simplified, and
how much of them is really needed for automatic continuity.
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